

#2608 Hu2G10 antibody-drug conjugates selectively target cleaved-activated Trop-2 in cancer cells and show therapeutic efficacy against multiple human cancers

Mediterranea Theranostic

Saverio Alberti, MD, PhD1.2*; Marco Trerotola, PhD3; Antonino Moschella, MD1; Raffaella Giavazzi4; Emanuela Guerra, PhD5

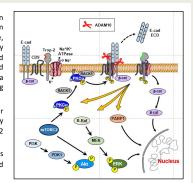
BxPC-3 pancreatic cancer

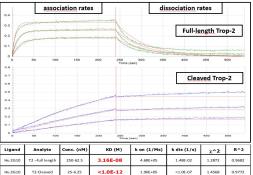
www.mediterranea-theranostic.com/en/

¹Unit of Medical Genetics, Department of Biomedical Sciences - BIOMORF, University of Messina, Messina, Italy ²Mediterranea Theranostic Srl, Lanciano, Italy ³Laboratory of Cancer Pathology, CAST, and Department of Medical, Oral and Biotechnological Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy ⁴Laboratory of Cancer Metastasis Therapeutics, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy ⁵Department of Medicine and Aging Sciences, nSection of Biomorphology, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy *Correspondence: alberti.saverio@gmail.com

ABSTRACT

Trop-2 is a transmembrane calcium signal transducer, which activates growth-signaling networks that converge on Akt, ERK, Cyclin D1, NFkB (1). Trop-2 cleavage by ADAM10 was shown to be an activator switch for induction of cancer growth and metastatic diffusion (2). We devised a strategy to obtain monoclonal antibodies (mAbs) capable of recognizing ADAM10-exposed sites in cancer cells. We succeeded at obtaining mAbs that efficiently bound Trop-2 expressing cancer cells and were able to inhibit cell growth in vitro. We humanized the 2G10 mAb as the IgG1/k Hu2G10 antibody. Hu2G10 binds cancer-specific, cleaved/activated Trop-2 with Kd <10-12 M other end, it binds uncleaved/wtTrop-2 in normal cells with Kd 3.16x10-8 M, thus promising unprecedented therapeutic index patients. Antibody-drug conjugates (ADC) of Hu2G10 were obtained using stable linkers, conjugation chemistries and payloads, among topoisomerase I inhibitors, bleomycin, RNA MMAE inhibitor, calicheamicin. Hu2G10-ADC selectively killed Trop-2-expressing cells in vitro. Doseresponse curves were obtained for the BxPC-3 pancreatic cancer, DU-145 prostate cancer, HT29 colon cancer cell lines and KM12SM/Trop2 colon cancer transfectants reaching EC50 values as low as 5.05x10-10 M. Hu2G10-ADC drove high anticancer effectiveness on cell- and patient-derived xenografts from colon, pancreas, prostate and ovarian cancer. Effectiveness followed a gradient of payload potency, with correspondingly high therapeutic indexes. Consistently, neither detectable toxic effects nor weight loss were observed in any subgroup of treated xenotransplant-bearing Taken together these findings candidate anti-Trop-2 Hu2G10-ADC for bestin-class anticancer therapy.


- (1) Guerra E. et al., The Trop-2 signalling network in cancer growth. Oncogene 32, 1594-1600 (2013).
- (2) Trerotola M. et al., Trop-2 cleavage by ADAM10 is an activator switch for cancer growth and metastasis. Neoplasia 23, 415-428 (2021).


BACKGROUND

Trop-2 is a type-I transmembrane protein encoded by the tumor-associated calcium signal transducer 2 (TACSTD2/TROP2) gene, which is widely overexpressed in the majority of human carcinomas. Here, Trop-2 is cleaved by ADAM10 to drive tumor cell growth and metastasis, through the activation of a dormant, ubiquitously-expressed signaling super-complex and downstream effectors.

The Hu2G10 mAb targets this cancer vulnerability by binding with high efficiency and specificity the cleaved/activated Trop-2 (c-Trop-2).

Multiple Hu2G10 antibody-drug conjugates targeting c-Trop-2 were obtained and assayed against human cancers in vitro and in vivo.

Top: cartoon depicting Trop-2 signaling cascade activation by ADAM10 cleavage between R87 and T88 in the first loop of Trop-2 extracellular domain (adapted from JCO 2023 41:4688).

Left: Hu2G10 absolute affinity to full length and cleaved Trop-2 as measured by bio-layer interferometry-based label-free binding. Association/dissociation kinetics are shown (Mol Cancer Ther 2023 22:790).

RESULTS

Figure 2. No off-target toxicities of Hu2G10-ADCs in vitro. KM12SM/Trop-2 and /vector only mock transfectants were assayed in parallel. Normalized values are shown. Bars: +SEM

150 BXPC3 | 150 B

EC50 comparison at 72h

DU-145 prostate cancer

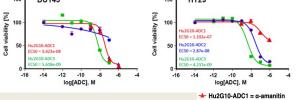


Figure 3. In vitro toxicities of Hu2G10-ADCs bearing different payloads on c-Trop-2 expressing human cancer cells, as log-dose versus % cell viability, measured after 72 h Hu2G10-ADC3 = salicheamicin Hu2G10-ADC4 = \$N-38 + Hu2G10-ADC5 = blenmwin

SUMMARY OF Hu2G10-ADCs IN VITRO TOXICITIES

	Hu2G10-ADC1	Hu2G10-ADC2	Hu2G10-ADC4	Hu2G10-ADC5
	α-amanitin,	MMAE,	SN-38	Bleomycin-
	RNA polymerase	microtubule	topoisomerase I	DNA damaging
	inhibitor	disrupting agent	inhibitor	agent
DU-145	3.42x10 ⁻⁸ M	Not Found		
Prostate cancer	-7.47	(> 1x10-6 M)		
HT29	1.10x10 ⁻⁷ M	2.87x10 ⁻⁸ M		
Colon cancer	-6.96	-7.54		
ВХРС3	3.42x10 ⁻⁹ M	8.08x10 ⁻⁹ M	Not found	
Pancreatic cancer	-8.47	-8.09		
KM12SM/Trop-2	8.00x10 ⁻⁹ M	5.05x10 ⁻¹⁰ M	2.32x10 ⁻⁴ M	2.11x10 ⁻² M
Colon cancer	-8.10	-9.30	-3.63	-1.68
transfectants				
KM12SM/vector	Not found	Not found	Not found	Not found
Colon cancer				
mock				
transfectants				

BxPc3 pancreatic cancer

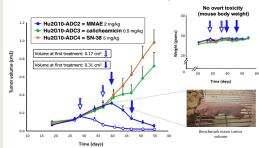


Figure 4. In vivo anticancer activity of Hu2G10 ADCs.
Athymic mice

subcutaneously (SC) injected with BxPC-3 pancreatic cancer cells were randomized (n=16 per group) and treated as indicated (arrows). Mice in the control groups received an irrelevant isotype-matched mAb. Tumor volumes and body weights were plotted against time. The inset shows a mouse bearing a 0.3 cm³ tumor. Error bars: +SEM

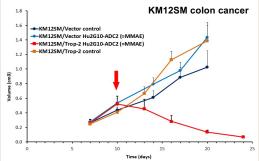


Figure 5. In vivo anticancer activity and specificity of Hu2G10-ADC. Athymic mice SC injected with cancer cell transfectants (n=16 per group) were treated with 4mg/kg of the Hu2G10-ADC2 or with an equal dose of an irrelevant isotypematched mAb as control. KM12SM/Trop-2 and /vector only (mock) transfectants were tested in parallel. Tumor volumes were plotted against time Arrow: time at treatment. Frror bars: +SFM

CONCLUSIONS

Hu2G10-ADCs showed specific killing of c-Trop-2 expressing cancer cells in vitro. Among the payloads that were tested, monomethyl auristatin E (MMAE) showed the highest potency, with the notable exception of prostate cancer. No off-target toxicities were observed.

MMAE-based Hu2G10-ADCs showed high efficacy and specificity in vivo against cancer cells expressing c-Trop-2. No adverse effects were observed in treated mice.

Our findings candidate the anti-c-Trop-2 Hu2G10 for best-in-class ADC anticancer therapy.

© POSTER TEMPLATE BY GENIGRAPHICS® 1.800.790.4001 WWW.GENIGRAPHICS.COM